Sabtu, 06 April 2013

Prinsip Kerja Laser

Kata LASER adalah singkatan dari Light Amplification by Stimulated Emission of Radiation, yang artinya perbesaran intensitas cahaya oleh pancaran terangsang. Kata kuncinya adalah “perbesaran” dan “pancaran terangsang” yang akan menjadi jelas kemudian. Dewasa ini, 30 tahun setelah ditemukan, kata laser telah menjadi perbendaharaan kata sehari-hari. Peralatan yang menggunakan komponen laser dapat ditemukan dimana-mana, seperti pembaca kode harga di kasir pasar swalayan, laserprinter, compact - disk player, pemandu pesawat jet dan pertunjukan laser dalam festival musik.
Laser merupakan sumber cahaya koheren yang monokromatik dan amat lurus. Cara kerjanya mencakup optika dan elektronika. Para ilmuwan biasa menggolongkannya dalam bidang elektronika kuantum. Sebetulnya laser merupakan perkembangan dari MASER, huruf M disini singkatan dari Microwave, artinya gelombang mikro. Cara kerja maser dan laser adalah sama, hanya saja mereka bekerja pada panjang gelombang yang berbeda. Laser bekerja pada spektrum infra merah sampai ultra ungu, sedangkan maser memancarkan gelombang elektromagnetik dengan panjang gelombang yang jauh lebih panjang, sekitar 5 cm, lebih pendek sedikit dibandingkan dengan sinyal TV - UHF. Laser yang memancarkan sinar tampak disebut laser - optik.

Prinsip Kerja Laser
Laser dihasilkan dari proses relaksasi elektron. Pada saat proses ini maka sejumlah foton akan di lepaskan berbeda sengan cahaya senter emisi pada laser terjadi dengan teratur sedangkan pada lampu senter emisi terjadi secara acak. Pada laser emisi akan menghasilkan cahaya yang memiliki panjang gelombang tertentu. berbeda dengan lampu senter emisi akan mengasilkan cahaya dengan banyak panjang gelombang. proses yang terjadi adalah elektron pada keadaan ground state (pada pita valensi) mendapat energi kemudian statusnya naik menuju pita konduksi ( keadaan eksitasi) kemudian elektron tersebut kembali ke keadaan awal (ground state) diikuti dengan beberapa foton yang terlepas. Kemudian agar energi yang dibawa cukup besar maka dibutuhkan sebuah resonator resonator ini dapat berupa lensa atau cermin yang sering digunakan adalah lensa dan cermin. ketika di dalam resonator maka foton-foton tersebut akan saling memantul terhadap dinding resonator sehingga cukup kuat untuk meninggalkan resonator tersebut. laser cukup kuat digunakan sebagai alat pemotong misalnya adalah laser CO2 laser yang kuat adalah tingkat pelebaranya rendah dan energi fotonya tinggi.

Aplikasi Laser
Banyak sekali aplikasi laser, diantaranya sebagai laser pointer (untuk presentasi), laser untuk pelurus arah tembakan, pemotong atau cutter yang sudah banyak digunakan di industri baja dan elektronik, laser hair Removal untuk menghilangkan rambut. Dan ada juga laser untuk penyembuhan luka. Sedangkan aplikasi lain untuk analisis misalnya:
1.    Spektroskopi
adalah teknik untuk menganalisa bahan yang sering digunakan dalam aplikasi ini adalah FTIR ( Fourier Transform Infra Red) menggunakan laser infra merah untuk di ukur tingkat serapan suatu bahan. kemudian dicocokan dengan tabel sehingga dapat diketahui bahan apa saja yang terkandung di dalam sampe yang diuji.
2.    Material prosessing
Biasa digunakan untuk pemotong laser yang sering di gunakan adalah laser CO2.
3.    Pengukur Jarak
Untuk mengetahui jarak bulan terhadap bumi dilakukan dengan metode ini karena kecepatan cahaya sudah diketahui maka dengan mengukur jeda waktu akan diperoleh besar jaraknya.
4.    Laser Pendingin
Laser sebagai pendingin memanfaatkan teknik ini. metode atom trapping. Metode dimana sejumlah atom diperangkap kedalam kotak yang telah dirangkai kedalam medan listrik dan medan magnet kemudian meradiasi panjang gelombang yang keluar, kemudian memperlambat mereka, dan selanjutnya sinar ini menjadi dingin. Proses ini dikenal dengan Bose-Einstein Condensate.


Sumber:
tan.awardspace.com/pubi/Laser.PDF
http://arawanagus.file.wordpress.com

warna-warni gelembung sabun



Sering kali kita melihat anak-anak atau bahkan orang dewasa memainkan gelembung sabun. Gelembung-gelembung tersebut tampak indah karena terlihat berwarna-warni.  Warna pada gelembung-gelembung tersebut disebabkan karena adanya superposisi cahaya (tumpang tindih cahaya).

Refleksi atau pantulan cahaya dari permukaan gelembung dan refleksi dari bagian dalam gelembung yang transparan menyebabkan superposisi, sehingga gelombang berwarna putih yang merupakan gabungan dari berbagai gelombang warna, yang bersinar ke arahnya akan dipantulkan kembali dari luar dan dari dalam secara bersamaan dan saling mempengaruhi. Superposisi tersebut dapat menghambat gelombang warna tertentu yg ditangkap mata. Ada yang menghambat gelombang warna merah, sehingga yang tertangkap mata adalah warna hijau dan biru, ada yang menghambat warna kuning sehingga memantulkan warna kebiruan, ada yang menghambat warna hijau sehingga menghasilkan warna magenta, dan ada yang menghambat warna biru menjadi warna kekuningan. Proses ini tidak sama dengan proses pembentukan pembiasan cahaya pada pelangi, namun sama dengan proses terbentuknya warna warni yang tertangkap pada solar/bensin dalam genangan air.

Jika kita amati sebuah gelembung sabun dari jarak yang cukup dekat, kita bisa melihat pantulan diri kita sendiri serta pantulan benda-benda di sekeliling kita. Mengapa bisa demikian? Ini karena cahaya yang jatuh pada sebuah gelembung sabun dipantulkan dan mencapai mata kita.
Setiap cahaya yang datang akan dipantulkan oleh dua buah permukaan: permukaan sisi luar gelembung dan permukaan sisi dalam gelembung. Mata kita menangkap kedua cahaya pantulan itu. Karena masing-masing cahaya pantulan itu adalah sebuah gelombang, yang memiliki frekuensi dan fase tertentu, maka mata kita menjumlahkan kedua gelombang menjadi sebuah gelombang baru. Istialh penjumlahan ini disebut sebagai interferensi.

Warna dari gelombang cahaya yang ditangkap oleh mata kita tergantung pada ketebalan lapisan permukaan yang dikenai oleh cahaya; untuk setiap ketebalan tertentu, maka warna yang dihasilkan akan berbeda-beda. Sementara itu, lapisan permukaan sebuah gelembung sabun tidak pernah benar-benar memiliki ketebalan yang sama. “Tegangan permukaan” membuat molekul-molekul cairan selalu bergerak dan tersusun ulang agar permukaan lapisan gelembung selalu menjadi minimum. Akibat proses ini, distribusi ketebalan lapisan permukaan gelembung sabun selalu berubah, dan cahaya yang dipantulkan dari gelembung sabun juga selalu terlihat berubah. Itulah mengapa mata kita menangkap cahaya yang berwarna-warni dari permukaan gelembung sabun, dan mengapa pola cahaya warna-warni tersebut terlihat bergerak-gerak
Dengan mengamati warna-warni pantulan dari permukaan sebuah gelembung sabun, kita juga bisa memperkirakan seberapa tipiskah sebenarnya permukaan tersebut. Jika kita masih bisa mengamati warna-warni yang dihasilkan dengan jelas, maka setidaknya ketebalan permukaan itu kurang lebih setara dengan panjang gelombang cahaya yang dipantulkan, yaitu antara 400 hingga 900 nanometer (1 nanometer adalah 1.000.000.000 kali lebih pendek daripada 1 meter.) Sedangkan jika ketebalan permukaannya telah menjadi lebih tipis daripada 400 nanometer, maka tidak ada  lagi cahaya tampak yang terpantulkan, dan permukaan gelembung sabun akan terlihat tembus pandang.